CHEMISTRY LETTERS, pp. 1467-1468, 1977. Published by the Chemical Society of Japan

THE ENANTIOSELECTIVE ABILITY OF CHIRAL DIPHOSPHINE-RUTHENIUM COMPLEX IN ASYMMETRIC DEHYDROGENATION OF SECONDARY ALCOHOLS

Katsutoshi OHKUBO, Ikuhiro TERADA, and Kohji YOSHINAGA

Department of Synthetic Chemistry, Kumamoto University, Kumamoto 860

(-)-2,3-O-Isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino) - buthane(diop) was found to be an efficient chiral ligand on using in Ru(II) catalyzed enantioselection of racemic alcohols with unsaturated additives. The dehydrogenation of PhEtCHOH by Ru₂Cl₄((-)-diop)₃ with PhCH=CHCOPh at 165°C resulted in the formation of S-(-)-PhEtCHOH(ll.0%e.e. at Conv.=56.8%).

The enantioselective dehydrogenation of racemic secondary alcohols(RR'CHOH) can be realized by means of Rh(I) or Ru(II) chiral phosphine complexes at the temperature over 120°C with or without unsaturated additives($R^{1}CH=CHR^{2}$),^{1,2}) and chiral Ru(II) complexes were found more active and selective than Rh(I) ones possessing the same chiral ligands.²)

However, the previously used RuCl₂((+)-nmdp)₃(nmdp=neomenthyldiphenylphosphine) prepared in situ from [nmdp] / [RuCl2 (PPh3)] =6 resulted in markedly low selection of racemic alcohols such as 1-phenylethanol, so that, more efficient chiral ligands are required for increasing the enantioselective ability of the Ru(II) complexes. In this regard, (+)- or (-)-2,3-0-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino) buthane (diop) has recently been found to be an effective chiral ligand when it was used in rhodium(I) catalyzed asymmetric hydrogenation of prochiral olefins.³⁾ In the present work, the efficiency of (-)-diop as a ligand of Ru(II) in Reaction(1) was examined in comparison with (-)-o-anisylmethylphenylphosphine(ampp), (+)-benzylmethylphenylphosphine(bmpp), and (+)-nmdp. When the dehydrogenation of 8.34x10⁻²mol 1-phenylethanol by using 2mM Ru₂Cl₄((-)-diop)₃ was carried out with 6.84x10⁻²mol PhCH=CHCOMe at 165°C, the optical purity(0.P.) of the unreacted alcohol obtained by fractional distillation without any optically active contaminants increased as the conversion increased. The reaction follows a pseudo-firstorder rate law (without racemization) up to Conv.~65% with the constant $k_{\rm p}/k_{\rm S}$ ratio which reflects the enantioselectivity (Table 1).

 $k_{\rm R}^{=(\ln[{\rm R}]_0/[{\rm R}])/t=\ln(10^4/(100-{\rm Conv.})(100-0.{\rm P.}))/t } (t={\rm reaction\ time}) (2a) \\ k_{\rm S}^{=(\ln[{\rm S}]_0/[{\rm S}])/t=\ln(10^4/(100-{\rm Conv.})(100+0.{\rm P.}))/t } (t={\rm reaction\ time}) (2b) \\ {\rm Among\ the\ isolated\ Ru(II)\ complexes\ made\ from\ RuCl_2({\rm PPh}_3)_3 and\ the\ chiral\ ligands } \\ using\ the\ phosphine\ exchange\ method^4), i.e.,\ Ru_2Cl_4((-)-diop)_3,\ RuCl_2((-)-ampp)_2^- ({\rm PPh}_3),\ and\ RuCl_2((+)-bmpp)_3 and\ the\ in\ situ\ prepared\ RuCl_2((+)-nmdp)_3\ complex,\ the } \\ \end{cases}$

Time	Conv.	- [a] ^{23a)}	0.P.	$10^{6}k$	$10^{6}k$	^k R ^{/k} S	Products (mol%) ^{b)}		
(hr)	(%)	(deg.)	(%)	$(s^{-1})^{R}$	(s ⁻¹)		AP	PEE	Others
2	23.0	0.46	0.88	37.5	35.1	1.07	98.89	trace	
3	32.7	0.65	1.24	37.8	35.5	1.06	83.56	15.51	0.93
4	41.0	0.92	1.75	37.9	35.4	1.07	87.01	12.33	0.66
6	54.9	1.28	2.44	38.0	35.7	1.06	88.00	11.38	0.62
8	65.3	1.49	2.84	37.8	35.8	1.06	88.37	11.17	0.46

Table 1. Ru₂Cl₄((-)-diop) 3 Catalyzed PhMeCHOH Dehydrogenation with PhCH=CHCOMe(165°C)

a) $\left[\alpha\right]_{D}^{23}$ -52.5° (c 2.27, CH₂Cl₂).⁵⁾ b) AP=acetophenone; PEE=racemic- and mesobis(l-phenylethyl) ether; Others=styrene and ethylbenzene.

Table 2. RR'CHOH Dehydrogenation(8.34x10⁻²mol) by Chiral Ru(II) Complexes with or without R¹CH=CHR²(6.84x10⁻²mol) at 165°C^{a)}

Complex	RR ' CHOH	b) $R^1CH=CHR^2$	Time	Conv.	$- [\alpha]_{D}^{C}$	O.P.	k _R /ks
			(hr)	(%)	(deg.)	(୫)	
	ſI	PhCH=CHCOPh	27	57.5	3.26	6.21	1.16
	I	PhCH=CHCOMe	8	65.3	1.49	2.84	1.06
	I	PhCH=CH ₂	70	40.0	0.83	1.59	1.06
/ /	I	none	145	45.7	0.04	0.07	1.003
$\operatorname{Ru}_2\operatorname{Cl}_4((-)\operatorname{-diop})_3$	511	PhCH=CHCOPh	24	56.8	4.41	11.0	1.30
	II	PhCH=CHCOMe	8	60.4	1.01	2.52	1.06
	[11	MeCH=C(Me)CO2	H ^{d)} 8	68.4	2.55	4.85	1.09
$\operatorname{RuCl}_{2}((-)-\operatorname{ampp})_{2}^{-}(\operatorname{PPh}_{3})$	II	PhCH=CHCOPh	78	51.8	0.04	0.09	1.002
$\operatorname{RuCl}_{2}((+) - \operatorname{bmpp})_{3}$	II	PhCH=CHCOPh	70	26.3	0.54	1.36	1.09
$\operatorname{RuCl}_{2}((+)-\operatorname{nmdp})_{3}$	II	PhCH=CHCOPh	72	59.1	0.21	0.51	1.01

a) $[\text{complex}]_0 = 4\text{mM}$ except the diop complex (2mM). b) I=PhMeCHOH; II=PhEtCHOH. c) $[\alpha]_D^{17-20}$ (of II) +40.0° (c 5, C_6H_6).⁶⁾ d) O.P. of R-(-)-MeCH₂CH(Me)CO₂H formed is 21.0% e.e.. All data (also those in Table 1) were obtained by the analyses with GC and polarimeter (UNION PM-101).

chlorine-bridged $\operatorname{Ru}_2\operatorname{Cl}_4((-)-\operatorname{diop})_3$ complex was actually effective for the enantioselection of the racemic alcohols, and the asymmetric fields formed by the coordination of $\operatorname{R}^1\operatorname{CH=CHR}^2$ into the chiral complex⁷ substantially affected the selectivity.

References

- 1) K.Ohkubo, K.Hirata, K.Yoshinaga, and M.Okada, Chem.Lett., 183 (1976).
- 2) K.Ohkubo, K.Hirata, and K.Yoshinaga, Chem.Lett., 577 (1976); K.Ohkubo, T.Ohgushi, and K.Yoshinaga, Chem.Lett., 775 (1976).
- 3) H.B.Kagan and T-P.Dang, J.Am.Chem.Soc., <u>94</u>, 6429 (1972); R.Glaser and B.Vainas, J.Organometallic Chem., <u>121</u>, 249 (1976), and references therein.
- P.W.Armit and T.A.Stephenson, J.Organometallic Chem., <u>57</u>, C80 (1973); B.R.James,
 D.K.W.Wang, and R.F.Voigt, Chem.Comm., 574 (1975).
- 5) U.Nagai, T.Shishido, R.Chiba, and H.Mitsuhashi, Tetrahedron, 21, 1701 (1965).
- 6) J.Kenyon, S.M.Partridge, and H.Phillips, J.Chem.Soc., 207 (1937).
- 7) K.Ohkubo, K.Hirata, T.Ohgushi, and K.Yoshinaga, J.Coord.Chem., 6, 185 (1977).

(Received September 28, 1977)